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Abstract

In this paper a method for calculating the thermal resistance of a wall through the dynamic analysis of both heat flux and surface
temperature samples is presented. Such a method models the transient thermal response of the wall through a linear relation with constar
parameters that links the instantaneous heat flux at the inner surface of the wall to the temperature difference between the surfaces of th
same wall at the same instant. Additionally, the linear relation mentioned above also links a certain pafrieems formed, each of them,
by differences of the same variables related to the considered instant aqmtdwious instants. The number of the parameters of the model
is derived through the principles of hypothesis testing. At this stage, the proposed method is applied to simulated data as indicated by the
proposal of European standard 12494, 1996. The results shown here have been concerning with different typologies of wall, namely light,
medium and heavy, as well as with 24 data sets obtained by picking data in the one-year time series. Although limited to winter and summer
measurement periods, a comparison between the proposed method and classic average one is also performed.
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1. Introduction wreckage. Also it needs to consider that, notwithstanding the
extreme accuracy of the measurement in laboratory, the ther-
The experimental determination of the thermal resistance mal resistance of the wall determined in situ might present a
of walls always represents a problem of practical interest nonnegligible deviation from the one determined on a proto-
in the field of the buildings thermal analyses as well type. This deviation is due not only to the inevitable differ-
as of the energy saving. In past years the experimentalences among supplies of the same material made in different
activity was made solely in laboratory by using prototypes periods, but also and above all to the inevitable differences
of walls in real scale realised on purpose. In particular, in the conditions of wall-laying.
the used test facility, designed and built following careful It should be noted that there exist in every respect
directives which were object of an ample set of international particular cases in which the experimental determination
standards [1-3], was able to determine the searched quantityf the thermal resistance of the wall must necessarily be
through measurements of both surface temperatures and heahade in laboratory (there is no alternative). They concern the
flux related to a wall in steady-state condition. design of prefabricated building, the certification of building
However, this experimental activity was not cost-effective components as provided in the tender, and so on. Contrarily,
because of the manufacture of the prototype and of its subsethere exist many other cases in which the determination of
quent transport in the measurement laboratory, where largethe thermal resistance of walls cannot be carried out in a
rooms, as well as suitable devices for prototype handling, |aporatory because the walls are exactly the walls of an
were strictly necessary. Additionally, the experimental ac- actyal building. In these cases it would be desirable and of
tivity mentioned above was not cost-effective also because great usefulness to evaluate the resistance in situ. Behaving
of the prototype demolition and subsequent removal of the | o this, we can get not only a large reduction of the costs
but also the complete elimination of the uncertainties due

* Corresponding author. to th_e use pf prototypes which (as pointed out abov_e) are
E-mail address: marcotul@ing.univaq.it (F. Marcotullio). inevitably different from the element under consideration.
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Nomenclature
a(t) generic thermal response at a given location R estimated thermal resistance of the
within £ (in this case, the surface heat flgx wall ... fa - W1
a) vector of(BT+ 1) length whose transposed is R final estimate of thermal resistance of the
defined ag’ = {a, a} wall ... fa - W1
a(r)  vector containings generic thermal inputs Ris  sumof squares of residuals.......... 24
(known) _ s thickness ofthewall...................... m
&+  valuesofthe vectaa at the nodallocatio§ = ; T inner surface temperature.................. K
b1 unknown constant parameters . ...... 2wi—1 T outer surface temperature K
b, b3 unknown constant parameters .. ........ K Tos period of the therrzal input§ """"""""" R
B number of the generic thermal inputs . ime ey |
c SpeCifiC heat .................... 'kgi:l"Kil ..................................... >
F1_, lower limit of the critical region Greek symbols
' identity matrix tud a significance level of the test
k thermal conductivity ....... R Wh—-K B unknown constant parameters . . . .. 2 )pW-1
'1\\/I/Ii rl1 Jrrflfe:rolfzi %%r:gsgﬁzgtrsnatr'ces B vector of theg parameters ... ..... KWL
. . . , B vector of estimateg parameters .. AK-W—1
Notj Z;fr']o:nfs‘fgrflt'eosg)assoc'ated atthe locaiom j  \;  aue of the ratidlo go(R)/R x 100
» number ofw nodal points (Fig. 1) At samplinginterval.......................... 5
q surface heat flux -2 v number of the degrees of freedom
q vector containing the samples of surface heat & dimensionless times 7/ At s
flUX . W2 P density......... R kg
q vector Contalnlng the estlmated Samples of w f|n|te element Of tme................ ..... $
surface heatflux .................... -2 2 3-D domain (i.e., body where the transient heaf
R thermal resistance of the walll. . . . ... 2 - W1 conduction takes place)

Unfortunately, the practical realisation of the measure- meaning for the parameters of the regression with the only
ment in situ presents many difficulties due both to the prob- exception for the sought thermal resistance, and (2) the
lems connected to the accurate measurements of the surfaceecessity to simultaneously determine some (generally up
temperatures and heat flux (number and type of sensors, theito three) unknown time constants in an iterative procedure.
location and shielding, and so on) and above all to the practi- A proposal of the European standard [7] took into account
cally complete impossibility to control the thermal transient. largely the ISO 9869, with the only exception of the complex
It, in fact, depends on the seasonal climatic conditions that algorithm mentioned above. This proposal, in fact, allows
can also happen in an unfavourable manner. All that compli- various techniques for data analysis to be used provided
cates the data analysis which is basic for the identification they be classified into classes defined by the same European
of the wall characteristics, as an example the thermal resis-standard.
tance. As is well known [4], the choice of the thermal model In this paper a new mathematical model is proposed. It
is of primary importance to reach the aim (i.e., the thermal allows the thermal resistance to be easily recognised and
resistance) in the simplest way and (if it may be done) also in provides the discrete dynamic response of a linear system
the rapidest way to avoiding so a redundant stop of facilities (in every respect any complex wall may be considered like
as well as useless inconveniences in case the measurementbat) following an original procedure described first in [8],
will be concerning with inhabited buildings. generalised recently in [9] and used several times for accu-

The features of the test facilities regarding the measure-rate thermal analyses in multi-dimensional bodies [9,10]. It
ments of the surface temperatures and heat flux, as well ass interesting to point out that the obtained result, although
the techniques for the analysis of the experimental data in shows some part-expected similarities with the ISO 9869, is
order to identify the searched thermal resistance, are objectable to identify the wall without performing further calcula-
of ISO standard 9869 [5]. tions and manipulations. Additionally, a statistic analysis of

Notwithstanding this, the model suggested in [5] and the parameters provides useful information to optimise the
described in [6] (i.e., a linear combination of unknown model dimension. The model dimension depends not only
parameters whose values may be derived through classicabn the considered wall, but also on the insights contained in
techniques of numerical regression) is not easy to use. Thethe measured data. It is also shown that the identification of
complexity mainly derives from (1) the lack of physical the characteristics of the wall becomes much more difficult
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when the input/output signals measured during the summer

season are used instead of the ones measured during the win-

ter season. Notwithstanding the suggested algorithm always
reaches its objective, the more the system is able to amplify
the lag between input and output, the more the complexity
of the algorithm (which is given by the number of terms ap-
pearing in the correlation, namely, by the store extension of
the remote format of the signal) increases in a significant
manner.

2. Deriving a parametric model for thetransient heat
conduction

If the heat flux or temperature histories at the outer
surface of a 3-D domain2 are known as functions of
time (i.e., we haveB thermal inputsa(z)), then the thermal
response:(t) (temperature or heat flux) at a given location
(interior or exterior) of2 may be derived in a fairly simple

manner as a solution to the following differential equation of
p — 1 order [8]:
r—1 ]
d'a
M0a+l;|v|,~w_o (1)

(wherep > 2) provided the unsteady heat conduction prob-
lem of interest be linear. The vectal = {a, &} contains the
time-dependent unknown functierir) as well as the given
B thermal inputsi(¢). The p matricesM of 1 x (B + 1) or-
der appearing on the LHS of Eq. (1) contain terms which
depend solely on the geometric characteristics and thermal
properties of the domair®.

With reference to the application which is herein of

great concern (as has already been said in Section 1), theVa+1=1— Z Np4j

surface heat flux or temperature histories of the body which
appear in the vectdi(z) are determined by an experimental
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Fig. 1. Scheme of the finite domain of time.

be chosen arbitrarily provided be derivable at least up to the
p — 1 order. In such a way, the following relations are valid:

. 2—p
d0'a 1 aan-i-j .
— A — — i, i=12,...,p—-1 3
PYS Af Z JEl +j 1 )4 ( )
j=1
Substituting Egs. (2) and (3) in Eq. (1), we obtain
2-p
Mo Y~ (Nutjus))
j=1
p—1 2-p i
M; 0'Npgj
- — il]1=0 4
2 ()] “

Itis well known[11,12] that there exists a physical constraint
among thep shape functions, namely,

2—p
Z Noyj=1

j=1
from which it follows:
2-p

()

j=0

Furthermore, differentiating both sides of the previous equa-

way. Therefore, they are given as a ordained sequence of;qn with respect t&, we get
samples corresponding to consecutive time instants, whose

spacingAt (i.e., sampling interval) is held constant along
the time-axis. In these cases it might be useful to search for
a solutionto Eq. (1) in a discrete form through a step-by-step
procedure as shown in [11].

To this purpose, a finite domain of timeof (p — 1) At
length may suitably be chosen (see Fig. 1). Then, by using
the symbok,,; (2— p < j <1) for the values assumed by
the vectora at the nodal locations = j (whereé =t/ Ar),
we can write

2—p

a~ Z Nn-‘rj A4 j
Jj=1

(2)

where only thep shape function®/,,;.; depend on the local
variablet. In particular, these functions represent a solution
of first attempt fora(z) on w and, for this reason, they may

. 2—p
' N, 0' N4 i
j=0

Then, the first term on the left-hand side of Eq. (4) may be
rewritten as

2—p 2—p
Mo ) (Nu+jan+;) =MoNu+18u+1+Mo ) (Nt jau))
j=1 j=0

and, in view of Eq. (5), after some matrix steps we obtain

2—p
Mo ) (Nutj@urt))
Jj=1
2—p
=Moa,+1+ MOZ Nu+j(@u+j — an+1)
j=0
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Similarly, the second term on the left-hand side of Eq. (4) @0, f Wi,y d§ and
may be rewritten as [, Wdg

fw W(aiNn+j/a$i) dg

p-1 2—p . R
M; 0'Npyj O =
Z[Aﬂ(ZTEia’"H)} Jo W a8

i=1 j=1 Additionally, setting

2—p .
8 Nn-‘,—l > Mi aan+j p— 1 M
Al o E Ot .
|:Atz < 9E 1+ AL r dE 1+ B; =Mo®q ; + Z AL O,

and, in view of Eq. (6), after some suitable manipulations we Eq. (9) may be rewritten in a more concise form as follows:
have

M

2-p
M (200N, Mo2u+1+ Y Bj(@us; — 8nr1) =0
Z i Z i +Jj j=0
, Att\ 4 o&i
i=1 j=1

Once thep matricesM have been calculated, the values of
- [22p i Ny i the parameter® defined above may suitably be determined
Z{ " |:Z 5 L (@) — an+1)]} as indicated in Ref. [9]. Therefore, performing the matrix
=1 products which appear in Eq. (9), we finally get

Finally, Eq. (4) may be taken as follows: B+1 2-p
) Z bi,n-{—lai,n—i-l + Z bi,n+j (ai,n+j - ai,n+1) =0 (10)
—r i=1 j=0
Moa,+1 + Mo Z Nutj@n+j — @n+1)

whereb; ,+1 = Mo(i) and b; ,4; = B;(i). Eq. (10) is of

j=0
! great concern. It states that the samples of the dependent
nt M; Lol 0" Ny variablea are linked to the corresponding samples of the
+ Z Ari Z dE (@n+j — Bn+1) () B independent variable in correspondence of the nodal
i=1 j=0

points of the time element of Fig. 1, i.e., at the instants

The minimisation of the deviation between the exact and f = §At.

approximate solutions (where the approximate solution is  Therefore, if the parametebsand the initial temperature
represented by Eq. (2)) can be obtained app|y|ng the methoodistl'ibution within the 3-D domain2 are given, then the
of weighted residuals to Eq. (7) [11] and assuming that the relation (10) may be used in a recursive form to get the
whole domain of solution coincides with the element of time Sample of the thermal responsg .1 at a given instant

w shown in Fig. 1. Behaving like this, we can derive the (»+ 1)Ar due to the samples d independent functions

following algebraic equation able to link the sampigs (namely, the boundary conditions of the unsteady heat
ofain w: conduction problem under consideration).

If, instead, the thermal properties of the solid are un-
known (this case is here of interest), then the paraméters
dg of Eq. (10) may be determined provided the value pof
is known and an adequate number of experimental data is
available.

2—-p
/ W (Moay 1) dé + / W<|V|0 D Nt j(@atj = 8ut1)

w Jj=0

' N,
/WZ{AI: |:§0 ag,ﬂ (Bn+j —an+1)i|}d§=0

8) 3. Applying the parametric model to a conductive

where W represents a weighting function dependentton slab-shaped domain

whose choice is completely arbitrary and above all not basic
to our purposes. As the matricksand the vectors, ; are
independent of, Eq. (8) simplifies to

Let us consider a large plate with temperature-indepen-
dent material properties subject to time-dependent boundary
conditions of the 1st kind at both the inner and outer surfaces

2-p of the wall. Therefore, in every respect the system under
Moau+1 4+ Mo Z[@OJ (@t — Bnt1)] consideration may be cqnsidergd one—dime_nsional and linear
j=0 from a thermal standpoint. During the transient, the samples

B of the surface temperaturegs (inner) and Tys (outer),
Z which represent the independent variables of the problem
appearing ina, are measured. Similarly, the samples of the
i=1 . .
heat flux per unit of area at the inner surface of the planar
where layer (this quantity represents the dependent variabdé

Z i, /(a-n+j - an+l)] =0 (9)
j=0
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the problem) are measured. From what was previously said,In matrix format, we have

it follows thata' = {g, Tis, Tos} and so Eq. (10) becomes

b1 n+1gn+1 + b2 ni1Tisnt1 + b3 nt1Tosn+1

2—p 2—p

+ Z b1,j(Gn+j — qn+1) + Z b2 j(Tisn+j — Tisn+1)
=0 =0
2—p

+ Zb&j(ToslH»j — Tosn+1) =0 (11)
j=0

Dividing both sides of the previous equation By 1,
Eqg. (11) may be rewritten in such a way as to explicit the
specific heat flux of interest at a given instéat=n + 1).
Therefore, we obtain

qdn+1 = ,32,n+lTiS,n+1 + /33,11+1Tosn+1

2-p

+ Z B1j(@n+j — dqn+1)
j=0
2—p

+> B2, (Tisntj — Tisnt1)
j=0
2—-p

+ Z B3,j(Tosn+j — Tosn+1)
j=0

(12)

where the generic paramefgyr; is taken as
bi’j
bl,n—i—l

It may be noted thap, ,+1 and B3 ,+1 are not indepen-
dent between them. In fact, when the thermal equilibrium
(characterised clearly by = 0 and7ys = Tis = cost= ?) is
reached, Eq. (12) reduces to

0= (B2nt1+ Bans)T

from which it follows thatBs ,+1 = —B2,,+1. Additionally,

Bij=—

‘Ip,nJrl:X;ﬂp (13)

This format allows us to emphasise that all the quantities
appearing in Eqg. (13) refer to thé1, modelling based
on the element of time characterised pynodal points.
Therefore, the vectop, is of order M x 1 with M =

3p — 2 and may be estimated through the samples of the
input/output signals processed by using the well known
ordinary least square (LS) method.

3.1. Model parameter estimation

To estimate the parameter vectfy,, the LS method
require writingM + v independent equations of (13) type,
wherev > 1 is the number of degrees of freedom for a fit to
the modelM , with M constant parameters. In matrix form,
we have

qp = Xpﬂp (14)
where the vectoq, containing the heat fluxes measured is
of (M +v) x 1 order and is linked to the vector containing
the M unknown parameters through the maixiy of order
(M +v) x M . The ordinary least square solution to Eq. (14)
is given by the following vector [13]:

By = 0X)%) XTa as)

It allows an estimat§, of the experimental vectar, to be
derived, that is

QP:XPBP (16)

A quantitative index of thej, fit to the measured dai,
may be given by the sum of squares of residuals [13]

wuslh) = (@=0)" @ =0)=a1-X() X

More information can be conveyed regarding each parameter
B by specifying the corresponding confidence interval [14].
The confidence interval on a parameter is an interval

when the steady-state temperature field is reached, Eq. (12)}ynstructed from the sample data, within which the true

simplifies to
q = B3 n+1(Tos— Tis),

wherepgs ,+1 is exactly the inverse of the thermal resistance
R for conduction through the wall, namel§z ,+1 = 1/R.

On the basis of these considerations, Eq. (12) may be

rewritten in the following form:

2—p

1
dn+1= 5 (Tosnt1 = Tisnt1) + Z B1j(Gn+j — qn+1)
j=0
2—-p
+ Z :32,j(TiS,n+j - is,n—i-l)
j=0
2-p

+ B3 (Tosn+j — Tosn+1)
j=0

parameter value lies with predetermined probability or
degree of confidence. It can be evaluated considering that
the quantity(8; — Bi)/6p, has the Student distribution whit

v degrees of freedonﬁﬂzi being theith diagonal element

of (XTX)~1s2. The sample varianc€ can be calculated as

Ris(B)/v. Thus, the 100L — )% confidence limits orB;
are found by solving the following probability statement:

i — Bi

Prl:—tl_a/z(v) < < tl_a/z(v)i| =1—-«

wheret1_q/2(v) is the inverse of StudentB cumulative dis-
tribution function withv degrees of freedom and probability
1— «/2 in each tail. Rewriting the probability equation to
solve forg; — g, the 10@1 — «)% confidence interval of;

is

Io(Bi) =268, - t1—a/2(V)
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The last equations reveal that, for a given model (i.e., given However, from a merely intuitive viewpoint, we can say that
ap; value), the reliability of the estimate increases (namely, the hypothesis H will be rejected if theRLs[l}p_l(B*)]
the corresponding1—, decreases) when the number of related to theM ,_; modelling withv degrees of freedom is
measured data sets (namely,increases. In fact; 4/2(v) significantly greater than the corresponditigs(8 ) related

presents high values for low and decreases very quickly g the M, modelling with v — 3 degrees of freedom.
up tov ~ 40 when theT' cumulative distribution function  Formally, H, will be rejected if the statistic

assumes quasi-steady values. bor 40 the confidence N ~ n
interval decreases slowly as /2. For assigned degrees P [Ris(Bp-1(B =0) — Ris(B))1/v1
of freedom the reliability of the estimate increases if an =~ RLs(ﬁp)/vz

optimum model for the wall under consideration is found
(i.e., minimisedR| s values).

(25)

(with v1 = 3 andv2 = v) is greater than critical value
F1-4(v1,v2), Wherea represents the significance level of
the test. The more the value af is low (as an example,
a = 0.05 or alsoa = 0.01), the more the probability to
reject the hypothesisg{when H, is true) is low. The values
of F1_4(v1,v2) as functions ofx, v1 and v, are available
in a both graphical and tabular form in the specialised

3.2. Determining the model dimension

The choice of an appropriate model dimension is most
crucial for successful thermal resistance estimation.
In Ref. [9] it was shown that the optimum valgeof p :
: . . . literature [16].
(usually included between 2 and 6) is a complicated function ! . .
. Since we have to select the appropriate model increas-
of the features of the system, of the thermal properties of the . ; o
. : : ing the chain structure, the applicability of the above pro-
system materials and af¢. In this case, the system is not . : I o
- : cedure requires that a starting model is fixed preliminarily.
known and, consequently, may be estimated solely by the : . . )
. ) L Although settingp = 2 is the more obvious way to do this,
use of measured data applying typical tools of statistics. such a choice cannot be alwavs aporopriate
To this aim, let beg,_; the vector of the parameters yS approp '
appearing in the\,_1 modelling based on the element of
time of Fig. 1 characterised by — 1 nodal points. In such
a circumstance, the parameter vecgy of M, may be
partitioned as

3.3. Quality criteria

Once the model dimension has been selected and the
vector of the parameters has been estimated, quantitative
Bl = {ﬁ;_l, B*} (18) criteria must be available to establish when, from a statistical

point of view, the quality of the obtained estimate has

Therefore, Eq. (14)is equivalentto reached a satisfactory level and, therefore, the measurements
_ _ «1) Bp—1 can be stopped.
W =Xph,= [Xp_l’ X ] { B* } (19) Directing attention towards the thermal resistacand

recalling the meaning of confidence interval on a generic
parameter, one may assume tiRais a reliable estimate of

R at the 1% level of significance if the ratiQ.gg(R)/k\ is

g =p" (20) smaller than a preestablished value (for example, 0.05 or
0.01). Since in any single application a single interval either
includes the parameter values or it does not, a number
dp —X*B*zxp_lﬂp_l (21) of such reliable estimates can be found, each of them
corresponding to a different number of experimental data
sets (namely, different degrees of freedom) and/or different
models (namely, different values).

. By — (xT —LyT _yxp* Settingw; = 1/11—4(R;) as uncertainly ofth estimate
Bpa(B) = (XpoaXp-1) "X, -a(Gp = X ﬂ ) _ _(22) R:, the weighted average = >N, w; R;/ YN, w; can be

It may pe noted that the result of Eq. (22_) is st_nctly _Imked_to assumed as the final estimate Bfprovided N' is enough

the choice expressed by Eq. (20). Dealing with this choice, great to make the uncertainly of the mea{hgl{v:l w; less

wherep* is of 3 x 1 order. Now, if we give a known value
to g%, i.e.,

then Eq. (19) becomes

Analogously to Eg. (15), the previous equation allows the
parameter vectg8,,_, of M ,_1 to be derived as

the sum of squares of residuals is given by thane% of R , wheres% depends on the desired estimate
: 2*\1 — 25\ T accuracy (for example,= 1%).
R = — X*
Ls[ﬂpfl(ﬁ )] (qp ﬂl) . Unfortunately, such a simple criterion is not always
x [I = Xp-1(X)_1Xp-1) " X) 4](a, —X*B)  (23)  sufficient. In fact, once an erroneous estimate (20% or

higher) has been observed after a very short period of
measurement analysing the heavy wall. The reason for this
erroneous result is due to both the assumed starting model
(p = 2, typical of very light walls) and a limited period of
measurement (8—10 h) during which the input/output signals
Ho: [3* =0 (24) were characterised by a quasi-steady trend.

At this stage, it is fundamental to verify that thef,_1
modelling be in every practical respect suitable to describe
the considered system. By using a mathematical formalism,
we should verify the following hypothesis [15]:
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| Start | their logical sequence and reciprocal interaction are well put
- v . into evidence.
4 .
Reading N
Data 4. Applicationsand results

No
The methodology developed by the authors in the previ-
\ ous sections has been applied to the test data sets given in

p=ptl Ref. [7]. In particular, these data sets refer to three different

walls whose thermal properties are shown in Table 1. The

Yes Yes first wall is a light, well-insulated one; the second is a mas-

sive wall with insulation layers on both sides; the third is a

No E?;::f;‘:af;f moderately massive homogeneous wall. As remarked in [7]

these walls are not intended to cover the most real building
elements, but they represent the critical elements for a dy-
namic analysis method.

Resistance R

Yes

Yy The samples of the inner and outer surface temperatures
Estimate of (independent variables) as well as the ones of the inner
99% Confidence surface heat flux (dependent variable) are given in the

Interval for R

form of a Fourier series whose first 37 harmonics have a
period T variable in the rang& < [3,8736 H. Therefore,
experimental data simulated per an entire year are available.
In order to simulate a number of measurement runs, 24
data sets containing temperatures and heat flux have been
generated for each wall. Data sets start every 360 h and
present a 15-days duration. For each of the above data sets,
Fig. 3 shows the average of the indoor/outdoor temperature
differences. It has a great influence on both the measurement
length and the results accuracy, and always falls between
0.14 and 21.6 K.
The dynamic method here proposed has been applied
to each of the three walls of Table 1 assuming as input
Fig. 2. Flow chart of the proposed procedure. and output signals the 24 data sets summarised above. For
each wall we have obtained 24 estimates which present the
percent deviations, namelgR — R)/R x 100, depicted in
Summarising, to avoid such erroneous estimates, anFig. 4. As it can be seen, the lowest deviations refer to
appropriate starting model would be adopted with the only the light wall (generallyt0.10% or less), while the highest
exception of very light building elements. To limiting the ones refer to the heavy wall (the second of Table 1) and
consequences of this choice on the measurement lengthyary from=+0.1% to aboutt:3.5%. The highest values refer
suitable starting values would be 5 to 15 passing from light generally to the measurement periods characterised by the
to heavy walls. lowest indoor/outdoor temperature differences.
Fig. 2 shows a flow chart of the whole proposed proce-  Both the wall characteristics and temperature differences
dure where the various steps of the calculation as well asaffect the measurement length. As shown in Fig. 5, suitable

Table 1
Thermal properties of the reference walls (i.e., 1, 2, 3) given in Ref. [6]

N  Materiad  sm) kWm iK1 pkegm3) c@kg K1) RmZKw

1 Facing 001 0100 600 1000 16286
Insulation 040 0035 30 1000
Facing 001 0100 600 1000

2 Facing 001 0100 600 1000 8429
Insulation 005 0035 30 1000
Masonry 030 Q0700 1800 1000
Insulation 015 0035 30 1000
Facing 001 0100 600 1000

3 Masonry 040 0200 800 1000 D000
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Fig. 4. Percent deviations between the true thermal resistances (of the, . .
walls of Table 1) and ones estimated through the present dynamic method'nStead' very hlgh values gb are generally observed in

assuming as input/output signals the 24 data sets of Fig. 3. summer measurement periods.
However, it may be noted that the dimensions of the
models that have allowed the results plotted in Figs. 3—6 to
estimates are generally reached in short measurement peribe obtained are much higher (generally 2—4 times) than the
ods (20-30 h) for the light wall independently of the cli- conventional dimensions found in Refs. [8,10]. The reason is
matic period. For the medium wall (third of Table 1), 50 h that thep value is affected not only by the inherent features
are generally sufficient to reach a suitable estimate, but theyof the analysed wall, but also and above all by the ones of
can also increase up to 90 h for typically summer periods the input/output signals (concerning this, we recall that the
of measurement. Instead, sufficiently long measurement pe-p value is derived exactly from these signals, as discussed in
riods characterise the heavy wall. They, in fact, vary from Section 3.2).
80-100 h (first 20 and last 6 weeks of the year) to 240-300h  For the sake of brevity, the time history of the estimated
(summer season). R has been performed for only the heavy wall, assuming as
Analogous considerations can be made for the modelinput signals the data set 1 (highest temperature difference)
dimension illustrated in Fig. 6. It should be noted that the and the data set 14 (lowest temperature difference) of Fig. 3.
model dimension rarely excee@s=5 andp = 10 for the Starting fromp = 15, as the measured data become avail-
light and medium walls, respectively, independently of the able, the model dimension increases if the corresponding
indoor/outdoor temperature differences. For the heavy wall, test requires it (Section 3.2). The results are summarised in
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It should be noted that Figs. 7 and 8 give the same results
obtained through the following equation:

> j=1(Tisj — Tos j)
Zj:l qj
which represents the starting step of the average method. In
particular, it assumes that the ratio of the mean of the tem-
perature differences on the mean of the surface fluxes goes
asymptotically towards the value of the searched thermal
resistance. A comparison with the average method shows
that, against an acceptable complication of calculation, the
methodology here proposed is able: (1) to reduce consider-

ably the stop periods of the test facilities (see Fig. 7), and
(2) to reach the results also in the heaviest seasonal periods
(i.e., summer), which instead make the average method com-
pletely ineffective (see Fig. 8). The above conclusions valid

R=

(26)

n only for a single wall can readily be extended to the other

the present method and the average one during a 250 h-long measuremerivalls of Table 1. In fact, once the average method is applied

(period 1 of Fig. 3—winter period).
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to the previous 24 data sets for each wall of Table 1, the fol-
lowing results can be pointed out. The measurement length
assumes the same order of magnitude of the one which has
been obtained by means of the dynamic method here pro-
posed, if the average of the indoor/outdoor temperature dif-
ference is greater than 10 K and if a percent deviation of
about+5% up to+10% (or a bit more) can be accepted. As
the average of the indoor/outdoor temperature differences
decreases, the measurement length quickly increases if the
percent deviations would be retained within the previous
limitations. When the average of the indoor/outdoor temper-
ature differences is lower than 5 K (periods 11 up to 19 of
Fig. 3), the average method cannot be used even for light
walls.

5. Conclusions

In this paper a method for the dynamic analysis of in-

Fig. 8. History of the thermal resistance of wall 2 estimated through both sjty data was developed in order to determine the thermal
the present method and the average one after a 350 h-long measuremeqtesistance of walls

(period 14 of Fig. 3—summer period).

Initially the method was applied to simulated data pro-
vided by the proposal of European standard “prEN 12494,

Figs. 7 and 8, respectively. In particular, these figures show 1996,” which were referring to three different typologies of
the ratioA = Ipg9(R)/R x 100. Comparing the results ob-  wall. The first is a light, well-insulated one; the second is a
tained for the winter and summer periods we can observemassive wall with insulation layers on both sides; the third
the influence of the indoor/outdoor temperature difference is a moderately massive homogeneous wall.

on both the scatter of the results and the measurement length To simulate a number of measurement runs, 24 data
to achieve a stable estimate. It can be remarked firstly that,sets containing surface temperatures and heat flux have
for the early hours, both the width of the confidence interval been generated for each wall. Data sets start every 360 h
and the corresponding thermal resistance estimate are highlyand present a 15-days length. They present an average of
variable. This is an expected result because of the model un-the indoor/outdoor temperature differences which oscillates
suitableness and low values (see Section 3.1). The length between 0.14 and 21.6 K.

of such an instability period generally increases, for a given  The following conclusions can be pointed out from the
wall, passing from the winter period (120 h) to the summer obtained results:

one (225 h, in the examined cases). For a given data set, the
instability period length increases passing from the light wall
to the heavy one.

— the dynamic method here proposed allows reliable
values of the wall thermal resistance to be obtained for
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every set of 24 simulated data. The percent deviations [2] ISO standard 8302-1991, Thermal insulation—determination of
between the true and calculated thermal resistances are  steady-state thermal resistance and related properties—guarded hot

very low for the light wall (generally-0.10% or less). plate apparatus.
The highest errors are instead obtained for the heavy [3] ISO standard 8990-1994, Thermal insulation—determination of
wall (£0.1% to about+3.5%) Higher values refer steady-state thermal resistance and related properties—calibrated and

- i guarded hot box.
ge”er‘."‘"y to the measurement perlpds Charaf:tensed by [4] L. Ljung, System ldentification—Theory for the User, Prentice Hall,
IOV\_/er indoor/outdoor temperature Q|ﬁerences, New Jersey, 1999.

— reliable values of the thermal resistance generally re- (5} 5o standard 9869-1994, Thermal insulation—building elements—in
quire short measurement periods (20-30 h) for the situ measurement of thermal resistance and thermal transmittance.
light wall independently of the climatic period. For the (6] c. Roulet, J. Gass, I. Marcus, In siti-value measurement: reliable
medium wall, instead, 50 h are generally required to results in shorter time by dynamic interpretation of the measured data,
reach a reliable value. However, 90 h can also be re- ~ ASHRAE Trans. 108 (1987) 1371-1379.
quired for typically summer periods of measurement. [7] prEN standard 12494-1996, Building components and elements—in-
Finally quite Iong measurement periods characterise the situ measurement of surface-to-surface thermal resistance.
heavy wall: from 80-100 h (first 20 and last 6 weeks of [8] F. Marcotullio, A. Ponticiello, Determination of transfer functions
the ear) tC.) 240-300 h (summer season)' in multidimensional heat conduction by means of a finite element

y . . ’ technique, in: R.W. Lewis, et al. (Eds.), Proceedings of Numerical

— acomparson with the well-known average method puts Methods in Thermal Problems, Part I, vol. VIII, Pineridge Press,
into evidence that the measurement length assumes the  Swansea, UK, 1993, pp. 226-236.
same order of magnitude of the one obtained through [9] L. Laurenti, F. Marcotullio, P. Zazzini, A proposal for the calculation
the dynamic method here proposed if the average of the of panel heating and cooling system based on transfer function
indoor/outdoor temperature difference is greater than ~ method, ASHRAE Trans. 108 (1) (2002) 183-201.

10 K and if percent deviations of abodi5% up to [10] L. Laurenti, F. Marcotullio, A. Ponticiello, Multi-dimensional tran-
4+10% can be accepted. However. when the average of sient conduction analysis by generalized transfer functions tables,

' : . . Heat Transfer 119 (1997) 238-241.

the indoor/outdoor temperature differences is lower than o] écej ri,”s er Tgh( ? ,)t 3|58| Method. MeGramtil. L
.C. Zlenkiewicz, e Finite emen ethod, cGraw-Hill, Lon-

5 K, the average method cannot be used. don. 1977.

. [12] S.S. Rao, The Finite Element Method in Engineering, Pergamon Press,
Further developments of the proposed method will be New York, 1989.

Cf)“cem'”g its Va!ldatlon with actually m_eas_ured data (not [13] J.V. Beck, K.J. Arnold, Parameter Estimation in Engineering and
simulated). To this purpose, a test facility is already at a Science, Wiley, New York, 1977.
advanced level of preparation. [14] Matlab Statistics Toolbox User's Guide, Version 2.1, MathWorks,
Natik, MA, 1997.
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